BHL Notes

MY LEARNING TRAJECTORY

0%

Introduction

For many engineering problems, we cannot obtain analytical (true) solutions. That’s why we employ numerical methods to obtain the solutions.  However, the numerical methods or algorithms are usually accompanied by computing with finite precision and errors of approximation (rounding and truncation). Before we get into the details of the topic, it is important to distinguish between accuracy and precision.

Read more »

Introduction

Runge-Kutta method is a numerical procedure for approximating values for the solution of ordinary differential equations (ODEs) with a given initial value. The simplest Runge–Kutta method has the same form as Euler method.

Read more »